B - Bibliography

[CMS97] P. Cignoni, C. Montani and R. Scopigno. DeWall: A Fast Divide & Conquer Delaunay Triangulation Algorithm in E^d. C.N.R. Pisa, 1997 http://vcg.isti.cnr.it/publications/papers/dewall.pdf

[CMS98] P. Cignoni, C. Montani and R. Scopigno. DeWall: A Fast Divide & Conquer Delaunay Triangulation Algorithm in E^d. Computer-Aided Design, Vol. 30, No. 5, pp. 333441, 1998 http://www.personal.psu.edu/faculty/c/x/cxc11/AERSP560/DELAUNEY/8DivideandConquerDeWall.pdf

[CT98] M. Teichmann and M. Capps. Surface reconstruction with anisotropic density-scaled alpha-shapes. In IEEE Visualization ’98 Proceedings, pages 67–72, San Francisco, CA, October 1998. ACM/SIGGRAPH Press.

[Del34] B. Delaunay (1934). "Sur la sphère vide". Bulletin de l'Académie des Sciences de l'URSS, Classe des Sciences Mathématiques et Naturelles. 6: 793–800.

[Ede92] H. Edelsbrunner. Weighted alpha shapes. Technical Report UIUCDCS-R- 92-1760, Dept. Comput. Sci., Univ. Illinois, Urbana, IL, 1992.

[Ede14] Herbert Edelsbrunner. A Short Course in Computational Geometry and Topology. SpringerBriefs in Mathematical Methods, 2014.

[EM90] H. Edelsbrunner and E. P. Mücke. Simulation of simplicity: A technique to cope with degeneratcases in geometric algorithms. ACM Trans. Graph., 9(1):66–104, 1990.

[EM92] H. Edelsbrunner and E. P. Mücke. Three-dimensional alpha shapes. Manuscript UIUCDCS-R-92-1734, Dept. Comput. Sci., Univ. Illinois, Urbana-Champaign, IL, 1992.

[EM94] H. Edelsbrunner and E. P. Mücke. Three-dimensional alpha shapes. ACM Trans. Graph., 13(1):43–72, January 1994.

[ETW92] H. Edelsbrunner, T. S. Tan and R. Waupotitsch (1992), "An O(n2 log n) time algorithm for the minmax angle triangulation" (PDF), SIAM Journal on Scientific and Statistical Computing, 13 (4): 994–1008, CiteSeerX 10.1.1.66.2895, doi:10.1137/0913058, MR 1166172, archived (PDF) from the original on 2017-02-09.

[KG92] J. M. Keil and C. A. Gutwin. (1992), "Classes of graphs which approximate the complete Euclidean graph", Discrete and Computational Geometry, 7 (1): 13–28, doi:10.1007/BF02187821, MR 1134449.

[Mei53] Meijering, J. L. (1953), "Interface area, edge length, and number of vertices in crystal aggregates with random nucleation" (PDF), Philips Research Reports, 8: 270–290, archived (PDF) from the original on 2017-03-08. As cited by Dwyer, Rex A. (1991), "Higher-dimensional Voronoĭ diagrams in linear expected time", Discrete and Computational Geometry, 6 (4): 343–367, doi:10.1007/BF02574694, MR 1098813.

[Rai95] R. Seidel (1995). "The upper bound theorem for polytopes: an easy proof of its asymptotic version". Computational Geometry. 5 (2): 115–116. doi:10.1016/0925-7721(95)00013-Y.

[Ree09] D. Reem (2009). "An algorithm for computing Voronoi diagrams of general generators in general normed spaces". Proceedings of the Sixth International Symposium on Voronoi Diagrams in Science and Engineering (ISVD 2009): 144–152. doi:10.1109/ISVD.2009.23. ISBN 978-1-4244-4769-5.

[Ree11] D. Reem (2011). "The geometric stability of Voronoi diagrams with respect to small changes of the sites". Proceedings of the 27th Annual ACM Symposium on Computational Geometry (SoCG): 254–263. arXiv:1103.4125.