Bezier Surfaces

Bézier Surfaces

Bézier Surfaces are special kind of NURBS build upon a controll net $B$ and a couple of Bernstein basis $J_{n,i}(u)$ and $K_{m,j}(w)$.

Mathematically, a parametric Bézier surface is defined by

\[Q(u, w) = \sum_{i=0}^n \sum_{j=0}^m B_{i,j} J_{n,i}(u) K_{m,j}(w)\]

where $u$ and $w$ are two parametric directions and $n = npts - 1$ while $m = mpts - 1$.

We point out that the Bernstein Basis are defined as

\[\begin{split} J_{n, i}(u) = \binom ni u^i(1-u)^{n-i}\\ K_{m, j}(w) = \binom mj w^j(1-w)^{m-j} \end{split}\]

Bézier Properties

Many properties of Bézier Surfaces are known:

Matrix Representation

Like in Bézier Curves, also Bézier surfaces are very well described by a matrix point of view. Here we could simplify the calculus by writing:

\[ Q(u, w) = [U][N][B][M]^T[W]^T\]

where

\[\begin{split} [U] =& \begin{bmatrix} u^n & u^{n-1} & \dots & 1 \end{bmatrix}\\ [W] =& \begin{bmatrix} w^n & u^{w-1} & \dots & 1 \end{bmatrix}\\ [B] =& \begin{bmatrix} B_{0,0} & \dots & B_{0,m} \\ \vdots & \ddots & \vdots \\ B_{n,0} & \dots & B_{n,m} \end{bmatrix} \end{split}\]

and $N$ and $M$ are the coefficient matrix of the base, so given by:

\[\begin{split} [N] = \begin{bmatrix} \binom n0\binom nn (-1)^n & \binom n1 \binom{n-1}{n-1}(-1)^{n-1} & \dots & \binom nn \binom{n-n}{n-n}(-1)^0\\ \binom n0\binom n{n-1} (-1)^{n-1} & \binom n1 \binom{n-1}{n-2}(-1)^{n-2} & \dots & 0\\ \vdots & \vdots & \ddots & \vdots\\ \binom n0\binom n1 (-1)^1 & \binom n1 \binom{n-1}0(-1)^0 & \dots & 0\\ \binom n0\binom n0 (-1)^0 & 0 & \dots & 0\\ \end{bmatrix} \\ [M] = \begin{bmatrix} \binom m0\binom mm (-1)^m & \binom m1 \binom{m-1}{m-1}(-1)^{m-1} & \dots & \binom mm \binom{m-m}{m-m}(-1)^0\\ \binom m0\binom m{m-1} (-1)^{m-1} & \binom m1 \binom{m-1}{m-2}(-1)^{m-2} & \dots & 0\\ \vdots & \vdots & \ddots & \vdots\\ \binom m0\binom m1 (-1)^1 & \binom m1 \binom{m-1}0(-1)^0 & \dots & 0\\ \binom m0\binom m0 (-1)^0 & 0 & \dots & 0\\ \end{bmatrix} \end{split}\]

or, in other worlds:

\[\begin{split} \left(N_{i+1,j+1}\right)_{i,j=0}^n =& \begin{cases} \binom nj \binom{n-j}{n-i-j}(-1)^{n-i-j} & \mbox{if } 0 \leq i+j \leq n\\ 0 & \mbox{otherwise} \end{cases}\\ \left(M_{i+1,j+1}\right)_{i,j=0}^m =& \begin{cases} \binom mj \binom{m-j}{m-i-j}(-1)^{m-i-j} & \mbox{if } 0 \leq i+j \leq m\\ 0 & \mbox{otherwise} \end{cases}\\ \end{split}\]

of course it is possible to decompose $[N]$ and $[M]$ in two more matrices, like for curves, leading to the following scheme:

\[Q(u, w) = [U]([C][D])[B]([E][F])^T[W]^T = [U][C][D][B][F]^T[E]^T[W]^T\]

Much more interesting is the situation where $m = n$ as $[M] = [N]$

Bézier Surface Derivatives

Of course is simple to determine the derivatives starting from the matrix notation.

We recall th results about the first and the second derivatives but the process could be extended further with no particular changes:

\[\begin{split} \frac {\partial}{\partial u} Q(u,w) = & [U'][N][B][M]^T[W]^T\\ \frac {\partial}{\partial w} Q(u,w) = & [U][N][B][M]^T[W']^T\\ \frac {\partial^2}{\partial u\partial w} Q(u,w) = & [U'][N][B][M]^T[W']^T\\ \frac {\partial^2}{\partial u^2} Q(u,w) = & [U''][N][B][M]^T[W]^T\\ \frac {\partial^2}{\partial w^2} Q(u,w) = & [U][N][B][M]^T[W'']^T \end{split}\]

where, as expected, we have:

\[\begin{split} [U'] =& [nu^{n-1} \quad (n-1)u^{n-2} \quad \dots \quad 2n \quad 1 \quad 0]\\ [W'] =& [mw^{m-1} \quad (m-1)w^{m-2} \quad \dots \quad 2m \quad 1 \quad 0]\\ [U''] =& [n(n-1)u^{n-2} \quad (n-1)(n-2)u^{n-3} \quad \dots \quad 1 \quad 0 \quad 0]\\ [W''] =& [m(m-1)w^{m-2} \quad (m-1)(m-2)w^{m-3} \quad \dots \quad 1 \quad 0 \quad 0]\\ \end{split}\]